extension | φ:Q→Aut N | d | ρ | Label | ID |
(C22×C10).1D4 = C5×C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).1D4 | 320,156 |
(C22×C10).2D4 = C5×C23.D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).2D4 | 320,157 |
(C22×C10).3D4 = C5×C42⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).3D4 | 320,158 |
(C22×C10).4D4 = C5×C42⋊3C4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).4D4 | 320,159 |
(C22×C10).5D4 = C5×D4⋊4D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).5D4 | 320,954 |
(C22×C10).6D4 = C5×D4.9D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).6D4 | 320,956 |
(C22×C10).7D4 = C5×C23.7D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).7D4 | 320,959 |
(C22×C10).8D4 = C5⋊3C2≀C4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).8D4 | 320,29 |
(C22×C10).9D4 = (C2×C20).D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).9D4 | 320,30 |
(C22×C10).10D4 = C23.D20 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).10D4 | 320,31 |
(C22×C10).11D4 = C23.2D20 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).11D4 | 320,32 |
(C22×C10).12D4 = C23.3D20 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).12D4 | 320,33 |
(C22×C10).13D4 = C23.4D20 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).13D4 | 320,34 |
(C22×C10).14D4 = C24⋊2Dic5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).14D4 | 320,94 |
(C22×C10).15D4 = (C22×C20)⋊C4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).15D4 | 320,97 |
(C22×C10).16D4 = C42⋊Dic5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).16D4 | 320,99 |
(C22×C10).17D4 = C42⋊3Dic5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).17D4 | 320,103 |
(C22×C10).18D4 = C23.5D20 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).18D4 | 320,369 |
(C22×C10).19D4 = D20.1D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).19D4 | 320,373 |
(C22×C10).20D4 = D20⋊1D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).20D4 | 320,374 |
(C22×C10).21D4 = C22⋊C4⋊D10 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).21D4 | 320,680 |
(C22×C10).22D4 = C42⋊5D10 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).22D4 | 320,688 |
(C22×C10).23D4 = D20⋊5D4 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 4 | (C2^2xC10).23D4 | 320,704 |
(C22×C10).24D4 = 2+ 1+4⋊D5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 40 | 8+ | (C2^2xC10).24D4 | 320,868 |
(C22×C10).25D4 = 2+ 1+4.D5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).25D4 | 320,869 |
(C22×C10).26D4 = 2+ 1+4.2D5 | φ: D4/C1 → D4 ⊆ Aut C22×C10 | 80 | 8- | (C2^2xC10).26D4 | 320,870 |
(C22×C10).27D4 = C5×C4.9C42 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).27D4 | 320,142 |
(C22×C10).28D4 = C5×C23.10D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).28D4 | 320,895 |
(C22×C10).29D4 = C5×C23.11D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).29D4 | 320,898 |
(C22×C10).30D4 = C5×C42⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).30D4 | 320,922 |
(C22×C10).31D4 = C5×D4⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).31D4 | 320,950 |
(C22×C10).32D4 = C5×D4.7D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).32D4 | 320,953 |
(C22×C10).33D4 = C5×C8⋊D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).33D4 | 320,969 |
(C22×C10).34D4 = C5×C8⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).34D4 | 320,970 |
(C22×C10).35D4 = C5×C8.D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).35D4 | 320,971 |
(C22×C10).36D4 = C5×C23.19D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).36D4 | 320,983 |
(C22×C10).37D4 = C5×C23.20D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).37D4 | 320,986 |
(C22×C10).38D4 = C5×D8⋊C22 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).38D4 | 320,1577 |
(C22×C10).39D4 = C23.30D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).39D4 | 320,25 |
(C22×C10).40D4 = C22.2D40 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).40D4 | 320,28 |
(C22×C10).41D4 = C24.D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).41D4 | 320,84 |
(C22×C10).42D4 = C42⋊1Dic5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).42D4 | 320,89 |
(C22×C10).43D4 = C20.32C42 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).43D4 | 320,90 |
(C22×C10).44D4 = C4⋊C4⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).44D4 | 320,95 |
(C22×C10).45D4 = C10.29C4≀C2 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).45D4 | 320,96 |
(C22×C10).46D4 = C20.33C42 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).46D4 | 320,113 |
(C22×C10).47D4 = C23.9D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).47D4 | 320,115 |
(C22×C10).48D4 = C23.34D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).48D4 | 320,348 |
(C22×C10).49D4 = C23.35D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).49D4 | 320,349 |
(C22×C10).50D4 = C23.10D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).50D4 | 320,350 |
(C22×C10).51D4 = D20.31D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).51D4 | 320,358 |
(C22×C10).52D4 = D20⋊13D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).52D4 | 320,359 |
(C22×C10).53D4 = D20.32D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).53D4 | 320,360 |
(C22×C10).54D4 = D20⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).54D4 | 320,361 |
(C22×C10).55D4 = C23.38D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).55D4 | 320,362 |
(C22×C10).56D4 = C22.D40 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).56D4 | 320,363 |
(C22×C10).57D4 = C23.13D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).57D4 | 320,364 |
(C22×C10).58D4 = Dic10⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).58D4 | 320,365 |
(C22×C10).59D4 = C22⋊Dic20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).59D4 | 320,366 |
(C22×C10).60D4 = C24.44D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).60D4 | 320,569 |
(C22×C10).61D4 = C23.42D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).61D4 | 320,570 |
(C22×C10).62D4 = C24.46D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).62D4 | 320,573 |
(C22×C10).63D4 = C24.47D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).63D4 | 320,577 |
(C22×C10).64D4 = C24.9D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).64D4 | 320,579 |
(C22×C10).65D4 = C23.14D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).65D4 | 320,580 |
(C22×C10).66D4 = C2×C23.1D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).66D4 | 320,581 |
(C22×C10).67D4 = C24.48D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).67D4 | 320,582 |
(C22×C10).68D4 = C23.45D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).68D4 | 320,585 |
(C22×C10).69D4 = C24.14D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).69D4 | 320,586 |
(C22×C10).70D4 = C24.16D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).70D4 | 320,588 |
(C22×C10).71D4 = C20.64(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).71D4 | 320,622 |
(C22×C10).72D4 = C4⋊C4.233D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).72D4 | 320,623 |
(C22×C10).73D4 = C20.76(C4⋊C4) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).73D4 | 320,625 |
(C22×C10).74D4 = C4⋊C4⋊36D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).74D4 | 320,628 |
(C22×C10).75D4 = C4○D20⋊10C4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).75D4 | 320,629 |
(C22×C10).76D4 = C4⋊C4.236D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).76D4 | 320,630 |
(C22×C10).77D4 = C4.(C2×D20) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).77D4 | 320,631 |
(C22×C10).78D4 = C42⋊4D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).78D4 | 320,632 |
(C22×C10).79D4 = (C2×C10).D8 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).79D4 | 320,660 |
(C22×C10).80D4 = C4⋊D4.D5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).80D4 | 320,661 |
(C22×C10).81D4 = (C2×D4).D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).81D4 | 320,662 |
(C22×C10).82D4 = D20⋊16D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).82D4 | 320,663 |
(C22×C10).83D4 = D20⋊17D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).83D4 | 320,664 |
(C22×C10).84D4 = (C2×C10)⋊D8 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).84D4 | 320,665 |
(C22×C10).85D4 = C4⋊D4⋊D5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).85D4 | 320,666 |
(C22×C10).86D4 = Dic10⋊17D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).86D4 | 320,667 |
(C22×C10).87D4 = C5⋊2C8⋊23D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).87D4 | 320,668 |
(C22×C10).88D4 = C4.(D4×D5) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).88D4 | 320,669 |
(C22×C10).89D4 = C22⋊Q8.D5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).89D4 | 320,670 |
(C22×C10).90D4 = (C2×C10).Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).90D4 | 320,671 |
(C22×C10).91D4 = C10.(C4○D8) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).91D4 | 320,672 |
(C22×C10).92D4 = D20.36D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).92D4 | 320,673 |
(C22×C10).93D4 = D20.37D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).93D4 | 320,674 |
(C22×C10).94D4 = C5⋊2C8⋊24D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).94D4 | 320,675 |
(C22×C10).95D4 = C22⋊Q8⋊D5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).95D4 | 320,676 |
(C22×C10).96D4 = Dic10.37D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).96D4 | 320,677 |
(C22×C10).97D4 = (C2×C10)⋊Q16 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).97D4 | 320,678 |
(C22×C10).98D4 = C5⋊(C8.D4) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).98D4 | 320,679 |
(C22×C10).99D4 = C23.46D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).99D4 | 320,747 |
(C22×C10).100D4 = C23.47D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).100D4 | 320,748 |
(C22×C10).101D4 = C23.48D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).101D4 | 320,758 |
(C22×C10).102D4 = C23.49D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).102D4 | 320,760 |
(C22×C10).103D4 = C40⋊2D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).103D4 | 320,761 |
(C22×C10).104D4 = C40⋊3D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).104D4 | 320,762 |
(C22×C10).105D4 = C40.4D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).105D4 | 320,764 |
(C22×C10).106D4 = C2×D20⋊7C4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).106D4 | 320,765 |
(C22×C10).107D4 = C23.20D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).107D4 | 320,766 |
(C22×C10).108D4 = C2×C23⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).108D4 | 320,846 |
(C22×C10).109D4 = C24.18D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).109D4 | 320,847 |
(C22×C10).110D4 = C24.20D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).110D4 | 320,849 |
(C22×C10).111D4 = C4○D4⋊Dic5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).111D4 | 320,859 |
(C22×C10).112D4 = C20.(C2×D4) | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).112D4 | 320,860 |
(C22×C10).113D4 = C2×D4⋊2Dic5 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).113D4 | 320,862 |
(C22×C10).114D4 = (D4×C10)⋊21C4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).114D4 | 320,863 |
(C22×C10).115D4 = (C5×D4)⋊14D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).115D4 | 320,865 |
(C22×C10).116D4 = (C5×D4).32D4 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).116D4 | 320,866 |
(C22×C10).117D4 = C2×C22.D20 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).117D4 | 320,1164 |
(C22×C10).118D4 = C2×C8⋊D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).118D4 | 320,1418 |
(C22×C10).119D4 = C2×C8.D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).119D4 | 320,1419 |
(C22×C10).120D4 = C40.9C23 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).120D4 | 320,1420 |
(C22×C10).121D4 = C2×C23.18D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).121D4 | 320,1468 |
(C22×C10).122D4 = C2×D4⋊D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).122D4 | 320,1492 |
(C22×C10).123D4 = C2×D4.8D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).123D4 | 320,1493 |
(C22×C10).124D4 = C20.C24 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 80 | 4 | (C2^2xC10).124D4 | 320,1494 |
(C22×C10).125D4 = C2×D4.9D10 | φ: D4/C2 → C22 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).125D4 | 320,1495 |
(C22×C10).126D4 = C5×C23.7Q8 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).126D4 | 320,881 |
(C22×C10).127D4 = C5×C23.24D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).127D4 | 320,917 |
(C22×C10).128D4 = C5×C23.25D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).128D4 | 320,928 |
(C22×C10).129D4 = C5×C8⋊8D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).129D4 | 320,966 |
(C22×C10).130D4 = C5×C8⋊7D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).130D4 | 320,967 |
(C22×C10).131D4 = C5×C8.18D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).131D4 | 320,968 |
(C22×C10).132D4 = C10×C4○D8 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).132D4 | 320,1574 |
(C22×C10).133D4 = C20.39C42 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).133D4 | 320,109 |
(C22×C10).134D4 = C2×C20.44D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).134D4 | 320,730 |
(C22×C10).135D4 = C2×C40⋊6C4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).135D4 | 320,731 |
(C22×C10).136D4 = C2×C40⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).136D4 | 320,732 |
(C22×C10).137D4 = C23.22D20 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).137D4 | 320,733 |
(C22×C10).138D4 = C2×D20⋊5C4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).138D4 | 320,739 |
(C22×C10).139D4 = C23.23D20 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).139D4 | 320,740 |
(C22×C10).140D4 = C40⋊30D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).140D4 | 320,741 |
(C22×C10).141D4 = C40⋊29D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).141D4 | 320,742 |
(C22×C10).142D4 = C40.82D4 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).142D4 | 320,743 |
(C22×C10).143D4 = C24.64D10 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).143D4 | 320,839 |
(C22×C10).144D4 = C22×C40⋊C2 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).144D4 | 320,1411 |
(C22×C10).145D4 = C22×D40 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).145D4 | 320,1412 |
(C22×C10).146D4 = C2×D40⋊7C2 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).146D4 | 320,1413 |
(C22×C10).147D4 = C22×Dic20 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).147D4 | 320,1414 |
(C22×C10).148D4 = C22×C4⋊Dic5 | φ: D4/C4 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).148D4 | 320,1457 |
(C22×C10).149D4 = C5×C22.SD16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).149D4 | 320,132 |
(C22×C10).150D4 = C5×C23.31D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).150D4 | 320,133 |
(C22×C10).151D4 = C5×C42⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).151D4 | 320,144 |
(C22×C10).152D4 = C5×C23.9D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).152D4 | 320,147 |
(C22×C10).153D4 = C5×C24⋊3C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).153D4 | 320,880 |
(C22×C10).154D4 = C5×C23.34D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).154D4 | 320,882 |
(C22×C10).155D4 = C5×C23.8Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).155D4 | 320,886 |
(C22×C10).156D4 = C5×C23.23D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).156D4 | 320,887 |
(C22×C10).157D4 = C10×C23⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).157D4 | 320,910 |
(C22×C10).158D4 = C5×C23.36D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).158D4 | 320,918 |
(C22×C10).159D4 = C5×C23.37D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).159D4 | 320,919 |
(C22×C10).160D4 = C5×C23.38D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).160D4 | 320,920 |
(C22×C10).161D4 = C10×C4≀C2 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).161D4 | 320,921 |
(C22×C10).162D4 = C5×M4(2)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).162D4 | 320,929 |
(C22×C10).163D4 = C5×C22⋊D8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).163D4 | 320,948 |
(C22×C10).164D4 = C5×Q8⋊D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).164D4 | 320,949 |
(C22×C10).165D4 = C5×C22⋊SD16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).165D4 | 320,951 |
(C22×C10).166D4 = C5×C22⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).166D4 | 320,952 |
(C22×C10).167D4 = C5×C22.D8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).167D4 | 320,981 |
(C22×C10).168D4 = C5×C23.46D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).168D4 | 320,982 |
(C22×C10).169D4 = C5×C23.47D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).169D4 | 320,984 |
(C22×C10).170D4 = C5×C23.48D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).170D4 | 320,985 |
(C22×C10).171D4 = C10×C22.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).171D4 | 320,1526 |
(C22×C10).172D4 = C10×C8⋊C22 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).172D4 | 320,1575 |
(C22×C10).173D4 = C10×C8.C22 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).173D4 | 320,1576 |
(C22×C10).174D4 = (C2×D20)⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).174D4 | 320,9 |
(C22×C10).175D4 = C4⋊Dic5⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).175D4 | 320,10 |
(C22×C10).176D4 = C42⋊6Dic5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).176D4 | 320,81 |
(C22×C10).177D4 = C24.2D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).177D4 | 320,85 |
(C22×C10).178D4 = C20.31C42 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).178D4 | 320,87 |
(C22×C10).179D4 = C2×D20⋊4C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).179D4 | 320,554 |
(C22×C10).180D4 = C2×C10.D8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).180D4 | 320,589 |
(C22×C10).181D4 = C2×C20.Q8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).181D4 | 320,590 |
(C22×C10).182D4 = C20.47(C4⋊C4) | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).182D4 | 320,591 |
(C22×C10).183D4 = C2×D20⋊6C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).183D4 | 320,592 |
(C22×C10).184D4 = C4○D20⋊9C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).184D4 | 320,593 |
(C22×C10).185D4 = (C2×C10).40D8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).185D4 | 320,594 |
(C22×C10).186D4 = C4⋊C4.228D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).186D4 | 320,595 |
(C22×C10).187D4 = C2×C10.Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).187D4 | 320,596 |
(C22×C10).188D4 = C4⋊C4.230D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).188D4 | 320,597 |
(C22×C10).189D4 = C4⋊C4.231D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).189D4 | 320,598 |
(C22×C10).190D4 = C2×C10.10C42 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).190D4 | 320,835 |
(C22×C10).191D4 = C24.62D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).191D4 | 320,837 |
(C22×C10).192D4 = C24.63D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).192D4 | 320,838 |
(C22×C10).193D4 = C24.65D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).193D4 | 320,840 |
(C22×C10).194D4 = C2×D4⋊Dic5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).194D4 | 320,841 |
(C22×C10).195D4 = (D4×C10)⋊18C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).195D4 | 320,842 |
(C22×C10).196D4 = (C2×C10)⋊8D8 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).196D4 | 320,844 |
(C22×C10).197D4 = (C5×D4).31D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).197D4 | 320,845 |
(C22×C10).198D4 = C2×Q8⋊Dic5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).198D4 | 320,851 |
(C22×C10).199D4 = (Q8×C10)⋊16C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).199D4 | 320,852 |
(C22×C10).200D4 = (C5×Q8)⋊13D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).200D4 | 320,854 |
(C22×C10).201D4 = (C2×C10)⋊8Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).201D4 | 320,855 |
(C22×C10).202D4 = C25.2D5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).202D4 | 320,874 |
(C22×C10).203D4 = C22×C10.D4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).203D4 | 320,1455 |
(C22×C10).204D4 = C22×D10⋊C4 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).204D4 | 320,1459 |
(C22×C10).205D4 = C2×C23.23D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).205D4 | 320,1461 |
(C22×C10).206D4 = C22×D4⋊D5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).206D4 | 320,1464 |
(C22×C10).207D4 = C2×D4.D10 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 80 | | (C2^2xC10).207D4 | 320,1465 |
(C22×C10).208D4 = C22×D4.D5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).208D4 | 320,1466 |
(C22×C10).209D4 = C22×Q8⋊D5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).209D4 | 320,1479 |
(C22×C10).210D4 = C2×C20.C23 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).210D4 | 320,1480 |
(C22×C10).211D4 = C22×C5⋊Q16 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 320 | | (C2^2xC10).211D4 | 320,1481 |
(C22×C10).212D4 = C22×C23.D5 | φ: D4/C22 → C2 ⊆ Aut C22×C10 | 160 | | (C2^2xC10).212D4 | 320,1511 |
(C22×C10).213D4 = C5×C22.4Q16 | central extension (φ=1) | 320 | | (C2^2xC10).213D4 | 320,145 |
(C22×C10).214D4 = C10×C2.C42 | central extension (φ=1) | 320 | | (C2^2xC10).214D4 | 320,876 |
(C22×C10).215D4 = C10×D4⋊C4 | central extension (φ=1) | 160 | | (C2^2xC10).215D4 | 320,915 |
(C22×C10).216D4 = C10×Q8⋊C4 | central extension (φ=1) | 320 | | (C2^2xC10).216D4 | 320,916 |
(C22×C10).217D4 = C10×C4.Q8 | central extension (φ=1) | 320 | | (C2^2xC10).217D4 | 320,926 |
(C22×C10).218D4 = C10×C2.D8 | central extension (φ=1) | 320 | | (C2^2xC10).218D4 | 320,927 |
(C22×C10).219D4 = C22⋊C4×C2×C10 | central extension (φ=1) | 160 | | (C2^2xC10).219D4 | 320,1514 |
(C22×C10).220D4 = C4⋊C4×C2×C10 | central extension (φ=1) | 320 | | (C2^2xC10).220D4 | 320,1515 |
(C22×C10).221D4 = D8×C2×C10 | central extension (φ=1) | 160 | | (C2^2xC10).221D4 | 320,1571 |
(C22×C10).222D4 = SD16×C2×C10 | central extension (φ=1) | 160 | | (C2^2xC10).222D4 | 320,1572 |
(C22×C10).223D4 = Q16×C2×C10 | central extension (φ=1) | 320 | | (C2^2xC10).223D4 | 320,1573 |